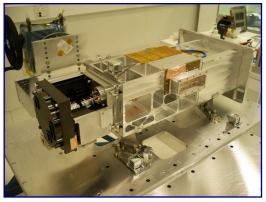


GOES-R Space Weather L2+ Algorithms

GOES-R3 Review


William F. Denig, Chief Solar & Terrestrial Physics Division NOAA/NESDIS/NGDC

+1 303 497-6323

William.Denig@noaa.gov

SWx Instrument Overview (H/W & L1b)

EUV and X-Ray Irradiance Sensors (EXIS)

- Extreme Ultraviolet Sensor (EUVS)
- X-Ray Sensor (XRS)
- EUVS/XRS Electrical Box (EXEB)
- Sun Positioning Sensor (SPS)

Sensor Manufacturer: LASP

Solar UltraViolet Imager (SUVI)

Sensor Manufacturer: LMATC

Sensor Procurement: LM

Space Environment In-Situ Sensor (SEISS)

Magnetospheric Particle Sensor Low (MPS-LO) Magnetospheric Particle Sensor High (MPS-HI) Solar & Galactic Proton Sensor (SGPS) Energetic Heavy Ion Sensor (EHIS)

Sensor Manufacturer: ATC

GOES-R Space Weather Space Weather L2+ Product Overview

Product Set 1 Complete

XRS.04: One-minute averages for both long and short channels

EUVS.03: One-minute averages of broad spectral bands

SEISS.16: One-minute averages - all MPS channels

SEISS.17: Five-minute averages - all MPS and SGPS channels

SEISS.18: Convert differential proton flux values to integral flux values

MAG.07: MAG data in alternate geophysical coordinate systems

MAG.08: One-minute averages MAG.09: Comparison to quiet

fields

SUVI.07: Composite (wide dynamic

range) images

SUVI.09 and .10: Fixed and running difference images

Product Set 2 Complete

XRS.05: Calculate the ratio of the short over long channels

XRS.09: Daily Background

XRS.07: Event Detection with one-

minute data

EUVS.03D: Daily averages of broad spectral bands

EUVS.04: Event Detection

SEISS.19: Density & temperature moments & level of spacecraft charging

MAG.10: Magnetopause crossing detection

detection

SUVI.12: Coronal Hole Images

SUVI.19: Thematic Map

Legacy Product
New Product

Product Set 3 In Process

XRS.10: Flare Location

EUVS.05: Multi-wavelength proxy

SEISS.20: Event detection based

on flux values

MAG.12: Sudden Impulse (SI)

detection

SUVI.13: Bright Region Data

SUVI.14: Flare Location (XFL)

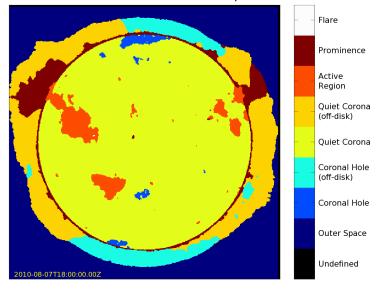
reports

SUVI.15: Coronal Hole Boundaries

SUVI.17: EUV Narrow Band

Irradiance

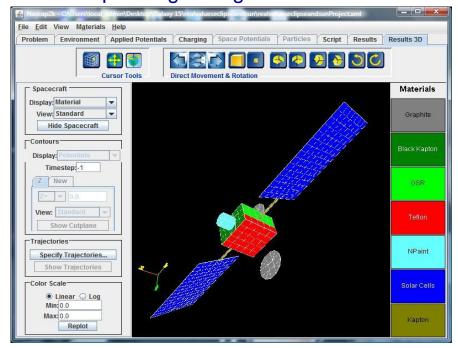
- ➤ 28 Level 2+ Space Weather Products in three product sets
- > 19 are operational legacy, 9 are new or have experimental heritage



Space Weather Product Set 2 - Examples

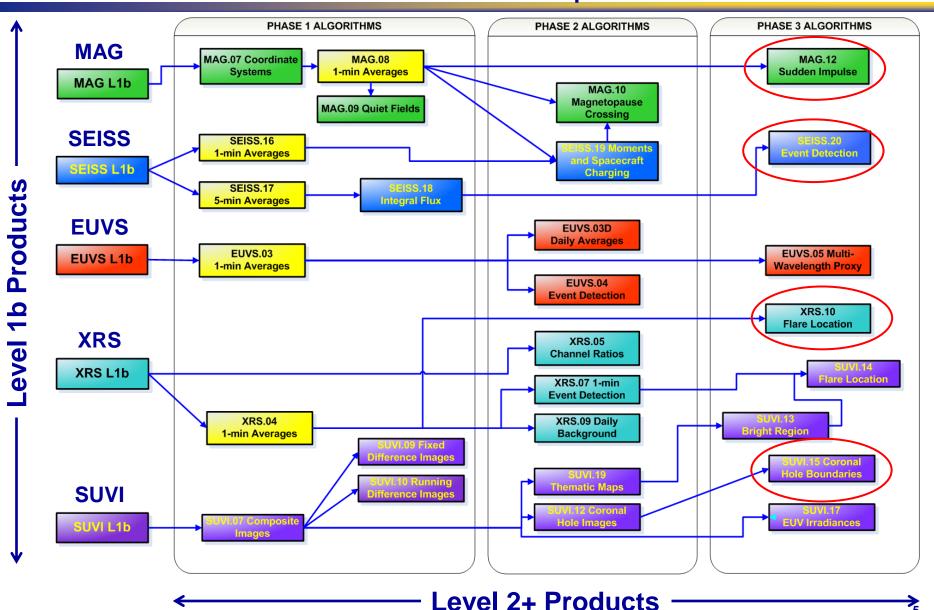
SUVI.19

Thematic maps will be used to identify distinct solar regions including flares, prominences, coronal holes, active regions and corona. This technology will be used for the GOES-R proving ground.



Proxy data from the NASA Solar Dynamics Observatory's Atmospheric Imaging Assembly.

SEISS.19


Determination of the <u>local</u> environment used to model spacecraft potentials and assess Electro-Static Discharge (ESD) risks. Image below is the NASCAP run of Galaxy-15 for the 05-April-10 geomagnetic storm¹.

Proxy data from GOES NOP.

Product L1b/L2+ Interdependencies

GOES-R Space Weather Selected New Products – Under Development

XRS-10: Flare Location

Purpose: Automate the location of solar flares using the XRS instrument to aid in evaluation of impacts on earth-based and satellite systems

Usage: SWPC solar flare forecast aid

Current Status: In research

MAG-12: Sudden Impulse Detection

Purpose: Automate the detection of impulsive magnetospheric events and provide shock wave impacts

Usage: SWPC geomagnetic storm and variation specifications and forecasts

Current Status: On hold until scientist is hired

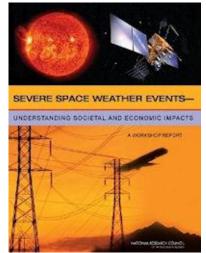
SEISS.20: Event Detection

Purpose: Adapt current SEP Event Detection algorithm to SEISS SGPS protons, define enhanced event detection using new SEISS measurements with dosimeters (MPS-HI) and heavy ions, especially iron (EHIS)

Usage: SWPC proton event warnings and NGDC satellite anomaly assessments

Current Status: In research

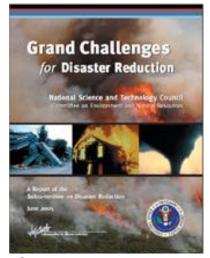
SUVI.15: Coronal Hole Boundaries


Purpose: Automate the identification and location of coronal hole boundaries on solar images

Usage: SWPC coronal hole maps

Current Status: Scientist just hired

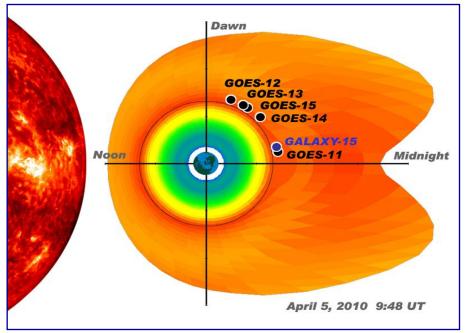
Space Weather (SWx) Impacts


NRC estimate of the economic impact of a severe space weather event exceeds \$1T in the first year – full recovery could take 4 to 10 years. (2008)

The NOAA Space Weather Prediction Center provides 24x7 monitoring.

President Obama/Prime Minister Cameron
At the World Meteorological Congress the U.S. and U.K. agreed to work together with other international partners to implement a fully operational global space weather warning system. (2011)

Space weather presents a variety of hazards to technical systems and human life depending on the types, strengths, timings and locations of the disturbances. (2009)


The U.K. Met Office pledges to establish a second 24x7 SWx forecast office.

Real World Example – Galaxy 15

In April 2010 the Galaxy 15 satellite suffered an anomaly during an interval of heightened space weather. NOAA's environmental assessment for this period concluded that Galaxy 15 satellite was at increased risk of ESD. While not officially attributing the failure to space weather the satellite builder acknowledged that ESD was the root cause. The availability of GOES data was critical to NOAA's environmental assessment.

ESD - ElectroStatic Discharge

GOES-R Space Weather Team

	Name	Organization	Fuctional Area
	Mary Shouldis	CIRES	Management
	Juan Rodriguez	CIRES	SEISS
	Alysha Reinard	CIRES	EXIS
	Jonathan Darnel (incoming)	CIRES	SUVI
	CIRES New Hire	CIRES	MAG
	Leslie Mayer	CIRES	MAG/SEISS
	Jim Vickroy	CIRES	SUVI
	Dave Bouwer	Space Env. Tech.	EUVS
	Steve Mueller	Univ. Colorado	EUVS
	Bill Denig	NGDC	Federal Oversight
	Janet Green	NGDC	SEISS Advisory
	Rob Redmon	NGDC	MAG Advisory
	Dan Wilkinson	NGDC	Archive
	Federal New Hire (pending)	NGDC	SUVI Advisory
	Steven Hill	SWPC	SUVI Advisory
	Terry Onsager	SWPC	SEISS Advisory
	Rodney Viereck	SWPC	XRS/EUVS Advisory
	Howard Singer	SWPC	MAG Advisory
	Christopher Balch	SWPC	Lead Forecaster

GOES-RRR 23 Sep 2011

GOES-R Team is also assisting in GOES-R Cal/Val Activities

Overall Status

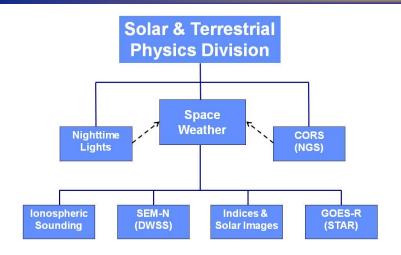
- ➤ GOES R Risk Reduction Activities are researching and developing operational algorithms for existing and new space weather products
 - User requirements for improved GOES-R space weather products have presented challenges requiring new approaches and algorithms for processing and interpreting the sensor data
 - Phases 1 and 2 are complete with completion of 20 of 28 algorithm requirements met to date
- ➤ The GOES R³ activities will allow SWPC and NGDC to meet these challenges and greatly improve the functionality and overall utility of the GOES R space weather sensor suite
- The Risk Reduction team is gearing up to take on calibration and validation activities needed for the space weather sensors

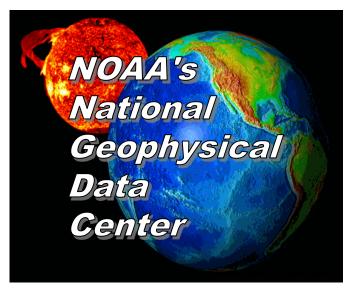
Functional Re-alignment – SWPC & NGDC

SWPC Focus Areas RT Operational Support

- Space Situational Awareness
- Forecasting
- Model Transition
- Model Science
- Product Development
- Instrument Requirements
- Display Systems
- Customer Requirements
- Stakeholders

NGDC Focus Areas Satellite Data Services


- Scientific Data Stewardship
- Cal/Val Observation Systems¹
- Post Launch Testing¹
- Algorithm Research¹
- Post-Event Analysis¹
- Instrument Science/Research¹
- Instrument Performance¹
- POES Processing¹


¹Functional Realignment from SWPC to NGDC (Ongoing)

GOES-RRR 23 Sep 2011

NGDC Solar & Terrestrial Physics Division

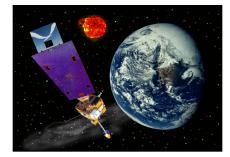
Space Weather – "The conditions on the sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and endanger human life or health." (National Space Weather Program)

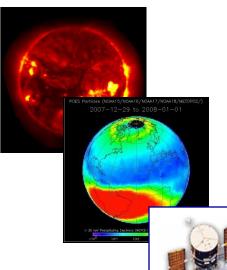
The Solar & Terrestrial Physics Division within the National Geophysical Data Center (NGDC) provides the archive, access and assessment (AAA) functions for the NOAA Space Weather program.

NGDC is also the organizational host for the World Data Center (WDC) for Geophysics, Boulder. The purpose of the WDCs is to collect, archive and distribute geophysical data and related products to world-wide users.

GOES-R Space Weather NGDC/STP – Stewarding NOAA SWx Data

GOES Space Environment Monitor

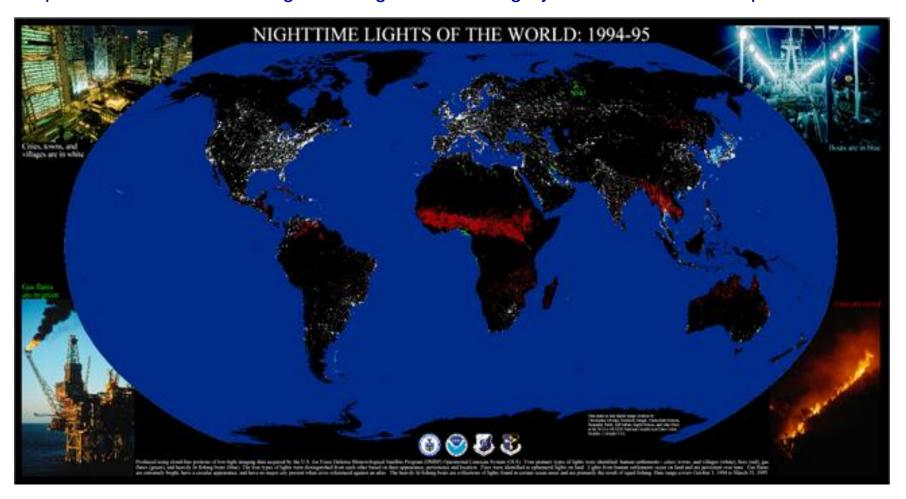

- Geosynchronous Orbit, since 1974
- Elements: In Situ Magnetic Fields Whole Sun X-ray Flux Energetic Particles



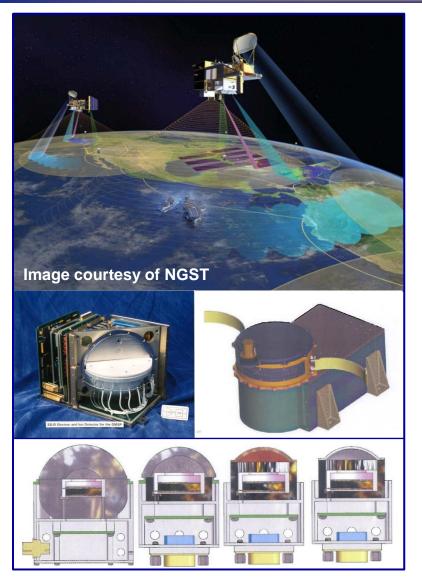
- Geosynchronous Orbit, since 2003
- X-ray Images taken every minute
- All Data Are Online (once operational)

POES/MetOp Energetic Particle Detector

- Polar Low Earth Orbit
- Energetic Particles Archived Since 1979
- All Data Are Online



NGDC manages the CLASS Boulder node


GOES-R Space Weather NGDC/STP – DMSP Nighttime Lights

Since 1992 STP has been the principal archive for DMSP. The Earth Observation Group is responsible for the NOAA Nighttime Lights earth imagery dataset and derived products.

GOES-RRR 23 Sep 2011

NGDC/STP – SEM-N Algorithm Development

STP is developing algorithms for the Space Environment Monitor – Next (SEM-N) for the Defense Weather Satellite System. NGDC is coordinating internal efforts with support provided by AFRL and the JHU-APL. SEM-N is fully integrated with the Algorithm Development Language (ADL)

Solar-Terrestrial Interactions

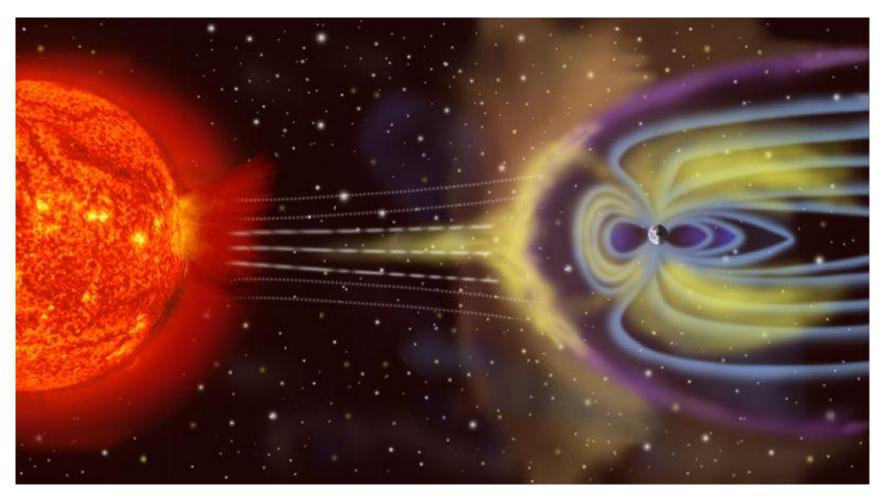


Image not to scale

Movie

SWx L2+ Algorithms

QUESTIONS?

GOES-RRR 23 Sep 2011